2乗に比例する関数
中学数学における最難関とも言える範囲がこの「2乗に比例する関数」でしょう。とはいえ、「2乗に比例する関数」という名称ではあまり馴染みの無い方も多いでしょう。もう少し具体的に言ってしまうと、
y = ax^2
という形の関数です。二次関数の中の一つの形ではありますが、これを初めて学習する時(中学3年次)はまだ二次関数という名称は適切ではありません。正式な二次関数と呼ばれる分野は、高校に入ってから学ぶことになります。この2乗に比例する関数とは何が違うのか、というのはグラフを書くとすぐにわかります。
放物線を描くのが二次関数であるのに対して、『グラフの頂点が座標の原点である放物線』を描くのが、2乗に比例する関数です。あくまで二次関数の中の一つの形を学習する事を忘れないようにしましょう。
まず、そもそも放物線とは何か、という話をしましょう。簡潔に言ってしまえば、下記の様なものです。
二つありますが、このどちらも放物線です。上の物を「下に凸の放物線」、下の物を「上に凸の放物線」といった言い方をします。図は適当な所で途切れていますが、実際は比例や一次関数のグラフと同様にどこまでも続いていきます。
特徴として、
- x=0を軸として、左右対称である事
- 曲線が丁度折り返しているところ(頂点)が、グラフの原点と一致する事
- また、その「y=0」はグラフにとってのyの最大値か最小値である事
が挙げられます。
今までグラフといえばほとんどが直線だった所にこの曲線です。最初は戸惑う事の方が多いのがこの2乗に比例する関数の序盤の上り坂です。では、どのようにグラフを理解していくのが良いのでしょうか。どうすれば簡単になるのでしょうか。
本項では、ここまでに書いてきた2乗に比例する関数について、詳しく扱っていきます。具体的には、上記のグラフの特徴を含んだ全体の特徴と、注意点。そして、例題を扱います。それでは一つずつ、見ていきましょう。
特徴
y=ax^2の関数である。
一次関数ではy=ax+bだった基本の形が、このようなものになります。aはこれまで同様に比例定数として扱われます。bという2つ目の定数が無い分、見慣れるのは早いかもしれません。
その特徴は何といっても二乗にあります。日本語の言い回しとして「指数関数的に増加していく」といったものがありますが、その語源となっているのがこれでしょう。xが増えるごとに、yの増加量が多くなっていくという特徴です。一次関数ではグラフのどの範囲を取っても変化の割合は変わりませんでしたが、今回の2乗に比例する関数ではそれが一定ではないのです。
答えが二つある。だが、例外も存在する。
実際に問題を解く上で最も認識しなくてはならないのはこの点でしょう。例えば比例定数が1、yが4だったとしたら、xの値は+2と-2になります。そう、「2乗するとAになる数」は、「±√A、」の二種類があるのは数学上の常識なのです。
しかし、yが0の時だけは話が別です。2乗すると0になる数は、0しかありません。この時だけは、解が1つという状態が生まれます。グラフを見ながら考えると非常に簡潔に理解できます。
比例定数によって急さが増す
こちらも図にすると簡潔です。一次関数では比例定数の大小によって角度が急になったり緩やかになったりとしましたが、放物線の比例定数はその放物線の広がり方を変えます。
最初の内は生徒達に馴染みの無い増加の仕方だと思いますので、図を書いたり、例を出したりして納得するまでサポートしましょう。
比例定数の正負によって凸の方向が変化する
ここまで図形を殆ど下に凸向きの放物線で統一していましたが、最初に紹介した通り、上向きの放物線も存在します。上向きと下向きは、比例定数によって決まります。下図を見れば分かると思いますが、向きが変わっても他の部分は変わりません。
絶対値が同じで正負が分かれた二つの放物線は、x軸を軸にして線対称になっている事に忘れずに触れておきましょう。
例題
- yはxの2乗に比例し、xが-3の時yは-18だった。
1-1. yをxの式で表しなさい。
1-2. x =2の時のyの値を求めなさい
1-3. この式のグラフを書きなさい
このように、一次関数の時にもあったような問題が出て来ることが非常に多いのが特徴です。同じ関数というカテゴリに属するのだ、と分かっていれば、求め方も分かってくるはずです。逆に、どうしても何から考えれば良いのか分からないという生徒には、一次関数の問題を与えてみるのが良いでしょう。勿論、一次関数の問題を解く過程と今の2乗に比例する関数の問題を解く過程とが非常に似ている事に気付くように誘導するのは忘れずに。
また、それで一次関数の問題に詰まってしまうようでしたらまだこの2乗に比例する関数の問題に挑戦する段階ではありません。どこからできていないのかをしっかりと遡って把握し、それらに不安を無くしてから再度ここに戻ってきましょう。
では、問題を解いていきます。
まずは、問題文をしっかりと分析させます。
「yはxの2乗に比例し」とありますから、この問題に出て来るxとyは関数の関係にある事が分かります(比例も関数の一種でしたね。分かっていないようでしたら確認を!)。
ですから、まずは式が
y=ax^2
である事が分かります。
そして、次の文章には「xが-3の時yは-18だった」とありますから、それぞれを当てはめます。これが成立するaが、今回の関数の比例定数です。
-18=a×(-3)^2
となりますから、
a=-2
となります。
元の式にあてはめて式を完成させましょう。
y=-2x^2
これが、一つ目の問題の回答になります。
そのまま2問目に入りましょう。
xが2の時ですから、式にそのまま当てはめるだけです。こういった問題は最初に式を完成させてしまうと非常に簡単ですね。
y=-2×2×2 =-8
で、答えは-8です。
より上位レベルの問題になると、一つ目の式を作らせる問を行わずに、このように特定の場合の値を聞いてくることがあります。その場合、つい「そのまま直接値を出せるんじゃないのか」などと横着をしたくなりますが、今回のように式を作って解を出すのが最も確実で正規の解き方です。
では最後に、グラフを書く問題です。グラフを正確に書くことが出来るなら、2乗に比例する関数についての基礎は出来ていると言っても良い理解度でしょう。
まずはx座標を1から順に数え、それぞれのy座標を求めます。同様に-1から順に下げる座標も取ります。今回の場合は比例定数が負の数であったため上に凸向きの放物線で、下図のように座標が取れます。(今回はx座標が絶対値3までの座標を取りました。)
そして座標を取ったらあとは滑らかな曲線で結ぶだけです。実は大した問題ではないのですね。しかし、この一問で上下の向きや広がり方の広さ、座標についての理解などが一挙に問われる問題でもあるのです。確実に回答できるようにしておかなければなりません。
完成図はこんな感じでしょうか。
生徒によっては「綺麗に引けない」と言ってくる子がいますが、左右対称である事と直線になってしまわない事を意識していれば大丈夫だという事も併せて伝えてあげましょう。
運営部おすすめ記事
理系のあなたに!国語ってどうして勉強するか知ってますか?
【塾講師必見】国語の教え方はこれだ!そもそも国語って何を教えるの?