特集記事のサムネイル画像

数学理解:三角形の合同証明

中学生

2021/12/17

 

三角形の合同について

 三角形の合同の証明について、しっかりと理解させていきましょう。

 理解さえ出来れば、この証明の単元は数学という論理的な科目の中の基礎に初めて触れる機会でありますから、今後数学をどのように捉えていくかにも影響を与える事になるのではないでしょうか。同時に、即物的な話をしてしまえば、この合同の証明は大体の場合において試験に出されると配点が高いものです。高校入試程度までの話なら、割と該当する事が多いと思います。部分点を与える配慮でしょうか。

 しかし、私が教えてきた生徒達は多くがこの証明を嫌っている事が多かったのです。その理由に「書くのが面倒くさい」というものがある事は否定出来ませんが(笑) 

しかし、書くのは面倒くさいですが、点数にはなるし、論理的な思考の基礎を築けるから応用は利くしと良い事ずくめの証明問題。その初対面たる三角形の合同の証明、しっかりと理解してもらいましょう。

 

 3つの合同条件

 数学では他の教科に比べ多い事かと思いますが、つい大変だから、理解させるのは難しそうだからと公式やルールを教えるだけになる事があると思います。合同条件なんかはそれが簡単に出来てしまいますが、そこは我慢してしっかりと教えて下さい。「何故この条件が揃えば合同なのか」が分かっていない限り、その後にやってくる直角三角形の合同の証明などの問題の度に訪れる丸暗記が嫌になる事は明らかです。

 

3辺がそれぞれ等しい

 初めにちょっとした注意点を一つ。たまにですが、「それぞれ」という単語を(大体の場合書くのが面倒臭いという理由で)省く子がいますが、それでは只の正三角形を表してしまいますからそれはダメなのだと教えましょう。それぞれというのは一組毎が別個の物として「それぞれ」等しい事を表しているのです。

 さて本題。3辺がそれぞれ等しいという事は、もしもこれが合同条件に適さないとすれば「3辺の長さがそれぞれ等しいのに違う形の三角形が存在する」筈です。ということは、「三角の角度が異なる」ということになりますね。勿論そんな事は無い訳ですが、論理で説明しても習いたての中学生はおそらくぽかんとしてしまうでしょう。ですので例えば、それぞれ等しい3辺を実際に触って、三角形を作らせるのが良いかと思います。どんなに無理矢理やろうとしても、同じ形になってしまいます。

 実際に作ろうとして「作れない」ということを実感する事で、「角度を変えると辺が届かなくなるから、それぞれ等しい3辺では合同な三角形しか作る事が出来ない」と理解出来るでしょう。

 

 上記のように3本の辺のモデルを用意すると良いでしょう。長さが変わらない3辺から、形の異なる三角形を作る事は不可能である事を体感します。

 

2辺とその間の角がそれぞれ等しい

 もう「それぞれ」については必要ないでしょう。角度についても同様です。

 この二つめの条件も先程と同じ様にモデルを用いて簡単に理解出来ます。「2辺とその間の角」のモデルを作ってしまいます。先程と同じ様に、

 

 

 このような形のモデルを用意してしまいましょう。2辺とその間の角が一定のモデルです。そして空いている残り1辺。そこにぴったりと収まる辺はたった一種類しか無い事が、十分に理解出来るでしょう。辺が少しでも長ければはみ出してしまい、短ければ届かないのです。

 

1辺とその両端の角がそれぞれ等しい

 さて、ここまでやってくれば何をするのかはご理解頂けるでしょう。同じようにモデルを作成して、この条件が成立しているときに定義されていない2辺の長さも1つの角も異なる事は出来ない事を示せばよいのです。

 

 モデルの形はちょっと面倒かもしれませんね。ただの1辺とそれぞればらばらになった2辺とを別個に用意して、角度を固定して生徒の前で動かしてあげるものです。2角が一定な状態を保ちつつ条件指定されていない2辺の長さが可変であればどのような形でも問題ありません。

 

 そもそも、証明問題とは?

 

 さて、ここまで「三角形の合同の証明」について追及していきましたが、証明問題は三角形に限った話ではありません。三角形でも直角三角形がありますし、平行四辺形であったり、はたまたただ角度が等しい事を証明する事もあるでしょう。相似の概念もすぐに出てきます。そこで、そういった問題にも対処できるために一つ「そもそも証明とは何か」についてお話します。少しでも「証明は面倒」という価値観から「証明って意外と面白いかも?」というものに近づけていけたら幸いです。

 

 

 そもそも、証明とは「~~だから、○○である」という根拠を基にした事実の提示です。そのまま「これは○○です」と言っても「え? 本当に?」と言われてしまう所を、理由を併せて提示する事でその疑問にも回答出来ている訳ですね。

 と、いう事は。つまり、「~~だから、○○である」と言う為には、「~~だからといって必ずしも○○という訳ではない」という状態ではいけないのです。「~~ならば、絶対に○○である」からこそそれが「証明」になるのです。であるからこそ、先程までの解説の中でもモデルを使って「この条件下では合同にならない方法が無い」事を一つ一つ証明していったのです。感覚で理解できる数学が得意な人には良いですが、そもそも証明が苦手だなどと思っている人に対して合同条件だのと言ったところで嫌悪感が増すだけでしょう。まずは証明内容をしっかりと理解しなければなりません。これから自分が説得する内容を理解していないようでは説得なんてできませんから。

 

 このような事は生徒さんにいう事ではありません(やる気を失わせてしまうかもしれないので)が、ご存じのとおり中学数学は数学の中の基礎中の基礎です。算数に至っては単元名が違う通り、数学ですらありません。そんな基礎の中にあって最も「数学的」なのがこの証明という問題なのです。

 

 現状から、公開されていない事実を見つけ出す事。その能力が、証明という問題には凝縮されています。「数学なんて実生活の何の役に立つんだ」という(ありきたりな)文句を言う子にこそ、証明問題はマッチしているのです。教えてあげましょう。証明された内容を使う事はコンピュータの方が断然優れているけど、その証明を初めに行うのは人間なのだ、と。何に使うどころではなく、使わずには仕事なんて出来ないような能力のスタート地点に立たせてくれるのがこの証明問題なんだ、と。

 

 まとめ

 さてさて、些か話が逸れましたがまとめに入りましょう。

・三角形の合同条件は三つ。それらは角の数だとか辺の数だとかで覚える前に、それが本当に合同を証明している事を理解する事。それが出来てから効率的な覚え方でも何でも教えましょう。

・論理的に説明する事は理解の助けにはなりません。実際に目の前で三角形が条件を満たすと合同になってしまう事を見せましょう。

・そして時間に余裕がある場合はどうすれば合同になるか、生徒に考えさせるのが良いと思います。一度自分でしっかりと考えていると、その後に説明した時の理解度が全然違います。

・合同問題は配点が高い! しっかりと理解して大きな得点源にしましょう。

・証明は数学の基礎! これができる事はその後の数学の学習にも、私生活に於いても必須の能力を養うものです。

 

 と、こんな感じでしょうか。

 しっかりと理解してもらって、丸暗記する数学とおさらばしましょう!

 

 塾講師ステーションTOPへ戻る

運営部おすすめ記事

すぐにアルバイトを始めたいあなたにオススメ。

塾講師 バイト

 

理系のあなたに!国語ってどうして勉強するか知ってますか?

【塾講師必見】国語の教え方はこれだ!そもそも国語って何を教えるの?

【塾講師必見】国語の教え方はこれだ!そもそも国語って何を教えるの?

 

塾講師バイトの時給が気になる!!~平均月収はいくら!?~

塾講師バイトの時給が気になる!!~平均月収はいくら!?~

 

【塾講師バイト必見!】生徒への接し方はこれだ!

【塾講師バイト必見!】生徒への接し方はこれだ!

 

 塾講師ステーションTOPへ戻る

 

 

キーワード

関連記事

新着記事

画面上部に戻る