平行線の同位角は等しい、の証明で、三角形の内角の和は180度、を使っている記事を見ましたが、第5基準の対偶は「同側内角の和が180度なら2直線は交わらない」になる、というのを見たことがあります。つまり、平行線の同位角は等しい、は公理であり、これを用いて「三角形の内角の和は180度」を証明するが正しい理論だと思いますが、いかがですか。お返事ください。
- 各教科の指導法
- 投稿日:2018/03/19
- 投稿者:神戸正敏
- 回答数:1件
中学・高校範囲の数学であると思われるので、ユークリッド幾何の範疇であると仮定します。
結論から言えば、ユークリッド幾何においては「平行線の同位角は等しい」は『定理』である、となります。公理ではありません。
但し、これは何を以て議論の端点と為すかであり、「平行線の同位角は等しい」を公理とすると、仰る「第5公準」を導く結果となります。
(本来は、公理をスタート(議論の端点)とする公準から、一定の論理により導かれるのが定理ですので、定理から公準を導くというのはおかしいのですが、原論のいうユークリッド幾何において示されている順序から言えば、そういう表現になります)
「平行線の同位角は等しい」という『定理』から、「三角形の内角の和は180度」という『図形の性質(を表す定理と言っても良い)』が導かれる、というのが適切であると考えます。
おそらく「平行線の同位角は等しい 証明」でネット検索された場合に、上位に表示される“証明もどき”のページ内容を見て仰られているのだと推察しますが、これは数学の体系的知識が無い中学生に平面幾何の基礎を教える際に、「その子が知っている範囲の簡単な知識だけで説明できる便宜的な用法」と言っても過言ではなく、証明としての体を為していないため、あくまで『こういう風に説明できるよ!』と言えるに過ぎません。
証明として正しいものではない上、論理も適切でない以上、このように教えるのは苦手意識のある子供に「解った気持ちになって、やる気にさせるためのもの」でしかなく、平行線の同位角は等しいことの証明で、三角形の内角の和は180度であることを使うのは、塾講師としては「誤り」であると言わざるを得ません(あくまで状況次第なので、原則論ですが)。
原論に書かれているユークリッド幾何の公理から第5公準を示し、そこから定理としての「平行線の同位角は等しい」を導き、それを以て「三角形の内角の和は180度」という図形の性質を説明する、というのが最も適切な授業ということになりますが、平面幾何分野の授業時間は一般には多くなく、これらに時間を割くことができないのが通常ですので、もどかしいところですね。
追記になりますが、上位の概念を公理、下位の概念を定理として表現するのは、アカデミックで抽象的な思考に慣れていない中学生・高校生には「誤った知識」を植え付けることになるので止めた方がよろしいでしょう。このような議論は、数学科進学希望の早熟な高校生などでは面白いかもしれませんが、そうでない子たちには混乱の基になりかねません。余談ですが、ご参考まで。
結論から言えば、ユークリッド幾何においては「平行線の同位角は等しい」は『定理』である、となります。公理ではありません。
但し、これは何を以て議論の端点と為すかであり、「平行線の同位角は等しい」を公理とすると、仰る「第5公準」を導く結果となります。
(本来は、公理をスタート(議論の端点)とする公準から、一定の論理により導かれるのが定理ですので、定理から公準を導くというのはおかしいのですが、原論のいうユークリッド幾何において示されている順序から言えば、そういう表現になります)
「平行線の同位角は等しい」という『定理』から、「三角形の内角の和は180度」という『図形の性質(を表す定理と言っても良い)』が導かれる、というのが適切であると考えます。
おそらく「平行線の同位角は等しい 証明」でネット検索された場合に、上位に表示される“証明もどき”のページ内容を見て仰られているのだと推察しますが、これは数学の体系的知識が無い中学生に平面幾何の基礎を教える際に、「その子が知っている範囲の簡単な知識だけで説明できる便宜的な用法」と言っても過言ではなく、証明としての体を為していないため、あくまで『こういう風に説明できるよ!』と言えるに過ぎません。
証明として正しいものではない上、論理も適切でない以上、このように教えるのは苦手意識のある子供に「解った気持ちになって、やる気にさせるためのもの」でしかなく、平行線の同位角は等しいことの証明で、三角形の内角の和は180度であることを使うのは、塾講師としては「誤り」であると言わざるを得ません(あくまで状況次第なので、原則論ですが)。
原論に書かれているユークリッド幾何の公理から第5公準を示し、そこから定理としての「平行線の同位角は等しい」を導き、それを以て「三角形の内角の和は180度」という図形の性質を説明する、というのが最も適切な授業ということになりますが、平面幾何分野の授業時間は一般には多くなく、これらに時間を割くことができないのが通常ですので、もどかしいところですね。
追記になりますが、上位の概念を公理、下位の概念を定理として表現するのは、アカデミックで抽象的な思考に慣れていない中学生・高校生には「誤った知識」を植え付けることになるので止めた方がよろしいでしょう。このような議論は、数学科進学希望の早熟な高校生などでは面白いかもしれませんが、そうでない子たちには混乱の基になりかねません。余談ですが、ご参考まで。
- 投稿日:2018/04/04
- 投稿者:石川秀樹
探している情報が見つからない場合は質問してみよう!